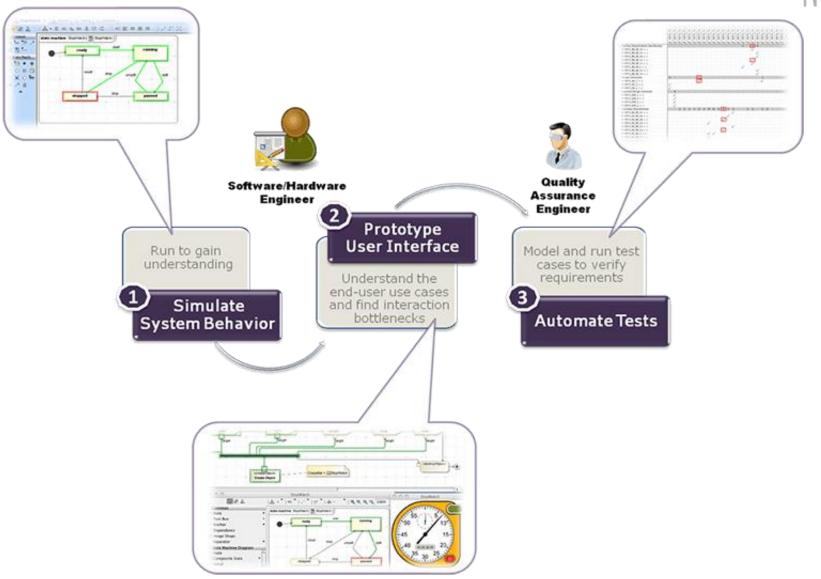


Use Cases For Model Execution

Žilvinas Strolia, 2016 May

Outline

- Introduction
- Automation and Debugging
- Behavior Simulation
- User Interface Mockups
- Engineering analysis
 - Automated Requirements Verification
 - Trade studies / trade-off analysis
 - Total mass/power/cost rollups
 - Model-based testing
- Integration of Analytics Models


Introduction

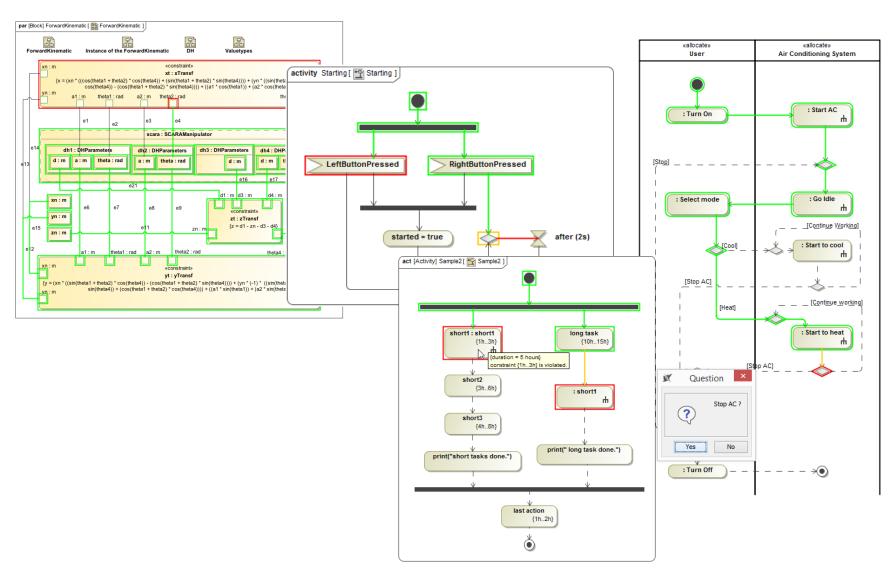
Simulation

- The purpose of a simulation is to gain system understanding without manipulating the real system, either because it is not yet defined or available, or because it cannot be exercised directly due to cost, time, resources or risk constraints.
- Simulation is typically performed on a model of the system.

Cameo Simulation Toolkit (CST)

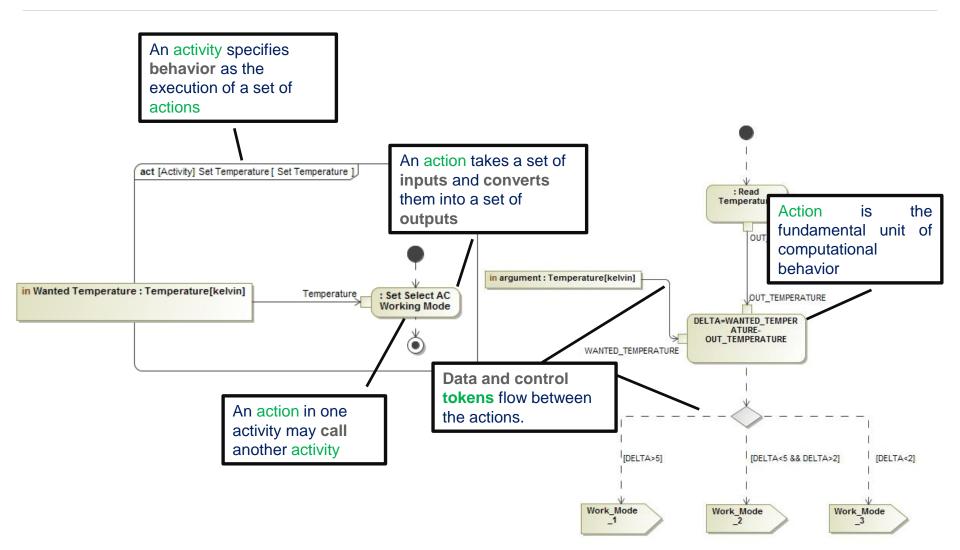
- Model execution framework and infrastructure:
 - Model debugging and animation environment
 - Pluggable engines, languages and evaluators
 - User Interface prototyping support
 - Model driven configurations and test cases
- The standard based model execution of:
 - Activities (OMG fUML standard)
 - Composite structures (OMG PSCS)
 - State Machines (W3C SCXML standard)
 - Actions/scripts (JSR223 standard)
 - Parametrics (OMG SysML standard)
 - Sequence diagrams (OMG UML Testing Profile)

Animation and debugging

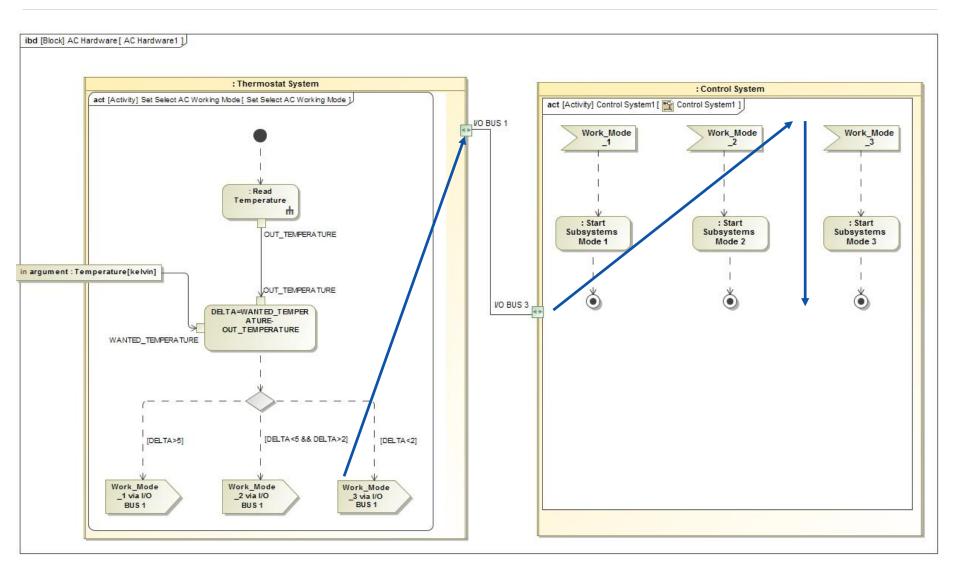

Enhance user understanding

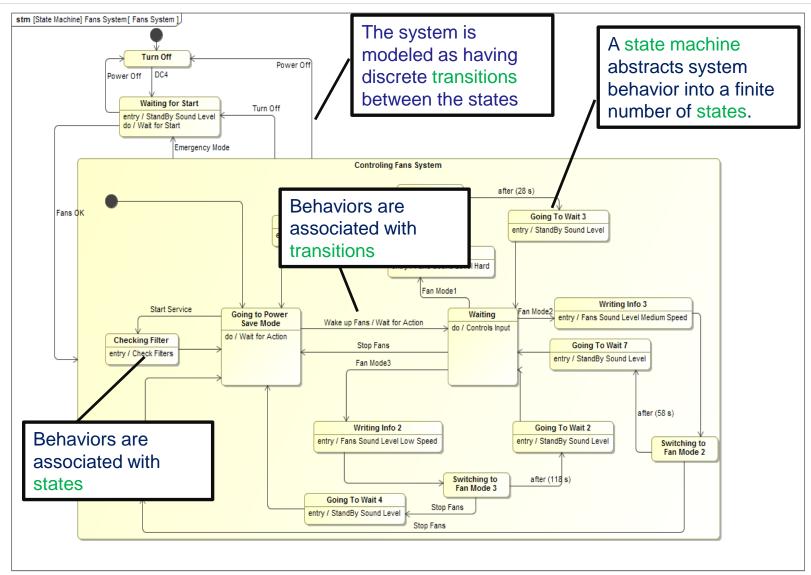
- Animating various diagrams during the execution of a dynamic system model representing the system behavior can significantly enhance user understanding.
- A simple simulation can either rely on execution of pre-scripted scenarios, or it can react to specific user interaction (e.g., "toggle this input and see what happens").

Animation



Behavior Simulation


Executing Activity Diagrams


Sending Signals via Ports

Executing State Machines

User Interface Mockups

GUI Examples

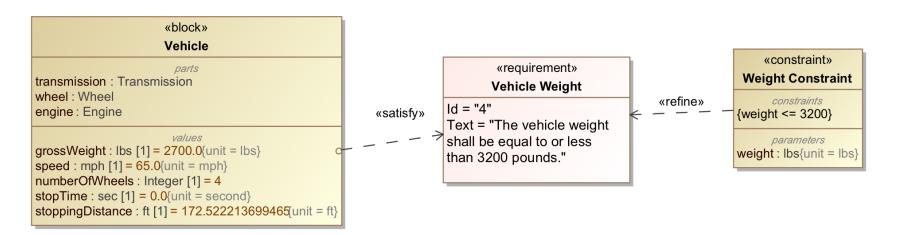
Train doors

Engineering Analysis

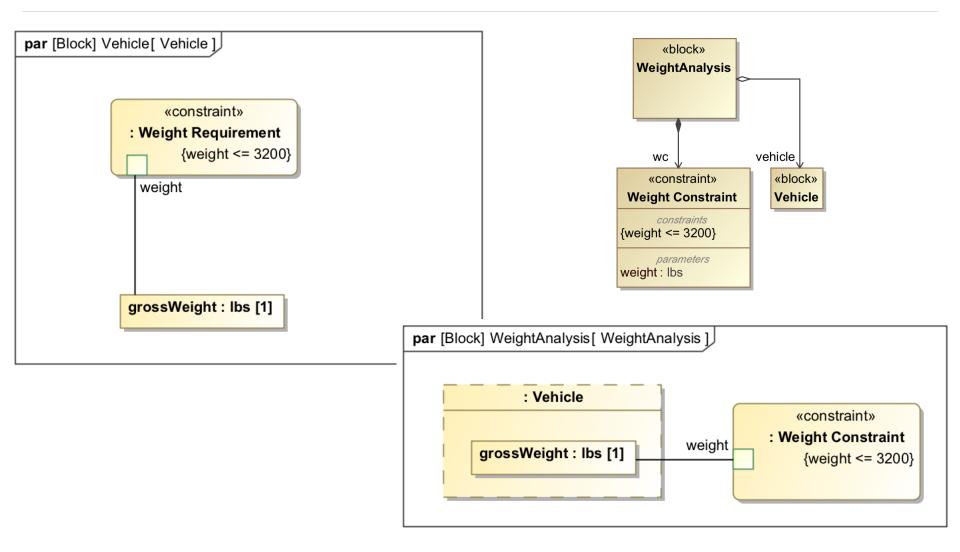
Engineering analysis

- Automated Requirements Verification
- Trade studies / trade-off analysis
- Total Mass/cost/power rollup
- Model-based testing

Automated Requirements Verification


Formalize requirements

- Represent requirement in BDD
- Identify system parameter which should satisfy the requirement
- Refine requirement into more formal/computable description
- Use constraint block in analysis context
- Bind required system parameters


Step 1. Refine (formalize)

Step 2. Binding

Constraints Verification

2 3 3		Q
Name	Value	
■ W eightAnalysis	Weight Analysis @ 73 b 24 bee	
□ 🖪 : Vehicle	Vehicle@71ec5be8	
grossWeight : lbs [1]	2700.0000	
unumberOfWheels : Integer [1]	A Paguirament 4. "The vehicle weight shall be equal to or less than 2200 pounds," is satisfied	
speed : mph [1]	6 Requirement 4 – "The vehicle weight shall be equal to or less than 3200 pounds." is satisfied.	
stoppingDistance : ft [1]	172.5222	
stopTime : sec [1]	0.0000	
🕀 💷 engine : Engine	: Engine@1c578899	
<section-header> 🕩 transmission : Transmission</section-header>	: Transmission@8846d59	
🖽 💶 wheel : Wheel	: Wheel@339ccce9	
		- Çi-
	Value	
ame	Value WeightAnalysis@73b24bee	
ame		
lame] <mark> </mark> WeightAnalysis	WeightAnalysis@73b24bee	
lame WeightAnalysis Vehicle	WeightAnalysis@73b24bee Vehicle@71ec5be8	
lame ☐	WeightAnalysis@73b24bee Vehicle@71ec5be8 3300.0000	
lame WeightAnalysis Vehicle grossWeight : lbs [1] numberOfWheels : Integer [1]	WeightAnalysis@73b24bee Vehicle@71ec5be8 3300.0000 4	
weightAnalysis WeightAnalysis Vehicle grossWeight: lbs [1] numberOfWheels: Integer [1] speed: mph [1]	WeightAnalysis@73b24bee Vehicle@71ec5be8 3300.0000 4 Requirement 4 - "The vehicle weight shall be equal to or less than 3200 pounds." is not satisfied	
lame WeightAnalysis Vehicle grossWeight: lbs [1] numberOfWheels: Integer [1] speed: mph [1] stoppingDistance: ft [1]	WeightAnalysis@73b24bee Vehicle@71ec5be8 3300.0000 4 Requirement 4 - "The vehicle weight shall be equal to or less than 3200 pounds." is not satisfied 172.5222	
Vame WeightAnalysis Vehicle grossWeight: lbs [1] numberOfWheels: Integer [1] speed: mph [1] stoppingDistance: ft [1] stopTime: sec [1]	WeightAnalysis@73b24bee Vehicle@71ec5be8 3300.0000 4 Requirement 4 - "The vehicle weight shall be equal to or less than 3200 pounds." is not satisfied 172.5222 0.0000	

Trade Studies/Trade-Off Analysis

What Is A Trade Study?

A trade study or trade-off study is the activity of a multidisciplinary team to identify the most balanced technical solutions among a set of proposed viable solutions

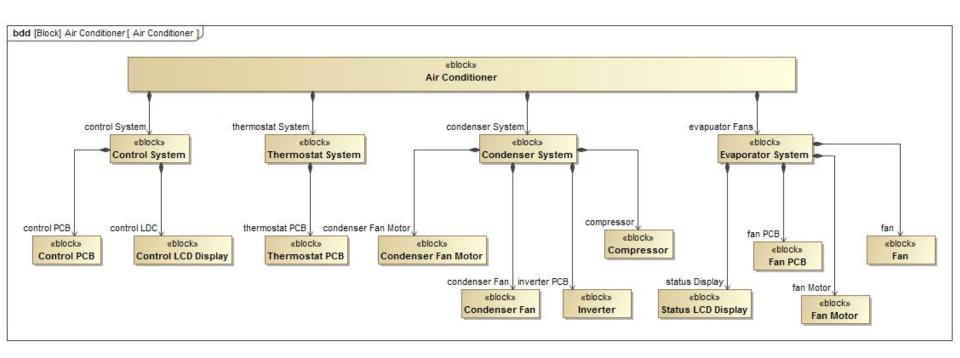
(System Engineering Manual, Federal Aviation Administration, 2006)

Parametric Trade Study

Examining various design alternatives by comparison

#	Name	Manufacturer	Capacity	Voltage	Refrigerant	T	Power	Frequency	Current	Warranty	Price	Application					
1	■ 4UKW3	Danfoss	32000.0	230.0	R-22	1.67	7825	60.0	16.7	1.0	937.0	Home					
2	■ 4UKW4	Danfoss	34000.0	230.0	R-22	1.86	125	60.0	16.7	1.0	936.0	Home					
3	■ 4UKW5	Danfoss	38000.0	230.0	R-22	2.050	0675	60.0	19.5	1.0	895.0	Home			_		
4	■ 4UKW6	Danfoss	38000.0	230.0	R-22	#		ame	Manufacturer Genteq	Power	Speed Number	RPM	Voltage	Current	Frequency	Price	Shaft Diameter
		Bristol			R-22	1	□ 2PRA8			0.246081	1	825.0	230.0	1.8	60.0	193.0	0.5
5	■ 5AGX7	Bristoi	18000.0	230.0		2	■ 2PRD4		Genteq	0.559275	1	1075.0	460.0	2.0	60.0	258.0	0.5
6	□ 5AGX9	Bristol	22000.0	230.0	R-22	3	□ 3LU99		Dayton	0.559275	1	1075.0	460 460.0	2.0	60.0	218.0	0.5
7	■ 6AGX9	Panasonic	6926.0	115.0	R-410A	4	■ 3M265		Dayton	0.246081	1	1625.0	230.0	3.1	60.0	213.0	0.5
8	■ 6AGY1	Panasonic	8190.0	115.0	R-410A	5	■ 3RCT2		Century	0.6524875	1	1075.0	230.0	4.6	60.0	417.0	0.5
9	□ 6AGY2	Panasonic	8155.0	230.0	R-410A	6	■ 3RCT6		Century	0.7457	1	1140.0	230.0	5.6	60.0	623.0	0.625
						7	■ 4M261		Dayton	0.1237862	1	1075.0	230.0	1.3	60.0	106.0	0.5
						8	■ 4M263		Dayton	0.37285	1	825.0	230.0	3.1	60.0	216.0	0.5
						9	□ 10K094		Genteq	0.37285	2	1625.0	230.0	2.5	60.0	277.0	0.5
						10	■ 20RK82		Century	1.11855	1	1140.0	230.0	5.3	60.0	550.0	0.625
						11	■ 32NA62		Century	0.186425	1	825.0	230.0	1.2	60.0	175.0	0.5

#	▼ Name	Total Power	EER	COP	Compressor	Compressor.Capacity	Condenser Fan Motor	Condenser Fan Motor.Power
1	□ 29AT83_45CE98_	1.677825	10.430170011771192	3.056039813448959	□ 29AT83 : Compressor	17500.0	☐ 45CE98 : Condenser Fan Motor	0.559275
2	□ 29AT83_44YU91_	12.30405	1.4222959106960715	0.41673270183394895	□ 29AT83 : Compressor	17500.0	44YU91 : Condenser Fan Motor	11.1855
3	□ 29AT83_40PK42_	1.565969999999999	11.175182155469136	3.2743283715524565	□ 29AT83 : Compressor	17500.0	■ 40PK42 : Condenser Fan Motor	0.44742
4	□ 29AT83_32NA71_	1.4914	11.73394126324259	3.438044790130079	□ 29AT83 : Compressor	17500.0	☐ 32NA71 : Condenser Fan Motor	0.37285
5	□ 29AT83_32NA68_	1.677825	10.430170011771192	3.056039813448959	□ 29AT83 : Compressor	17500.0	32NA68 : Condenser Fan Motor	0.559275
6	□ 29AT83_32NA67_	1.4914	11.73394126324259	3.438044790130079	□ 29AT83 : Compressor	17500.0	32NA67 : Condenser Fan Motor	0.37285
7	□ 29AT83_32NA66_	1.364631	12.823979522669498	3.757426000142163	□ 29AT83 : Compressor	17500.0	32NA66 : Condenser Fan Motor	0.246081
8	□ 29AT83_32NA64_	1.4914	11.73394126324259	3.438044790130079	□ 29AT83 : Compressor	17500.0	32NA64 : Condenser Fan Motor	0.37285

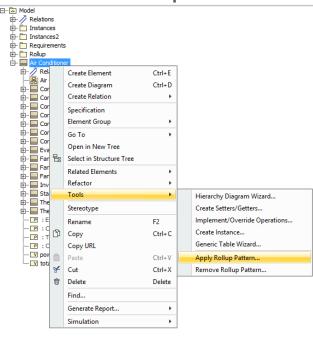

Mass, power, cost rollups

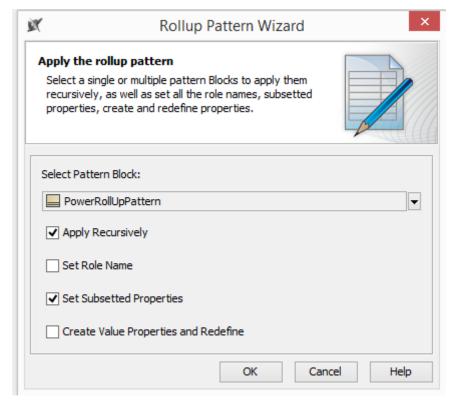
The problem

Requirement:

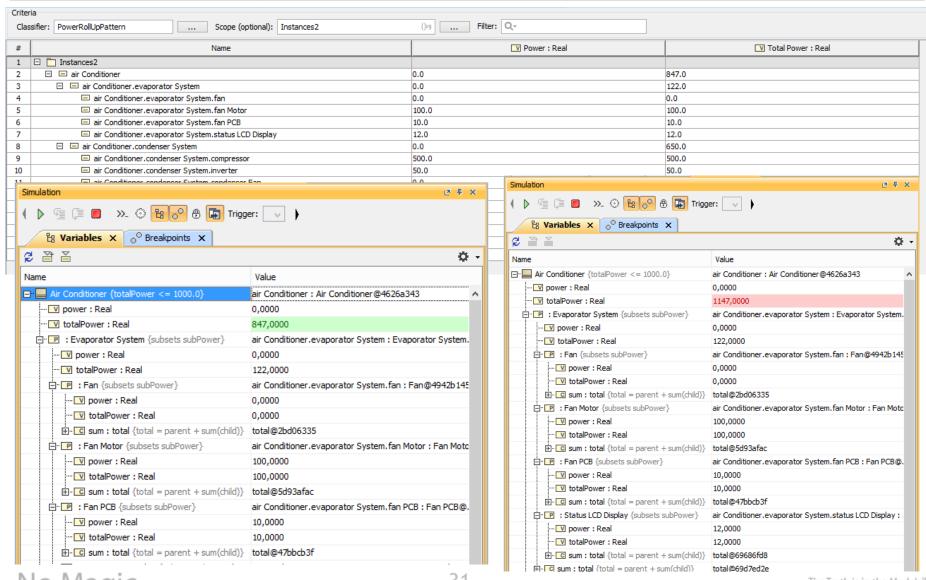
The total power of air conditioner shall not exceed 1.0 kW.

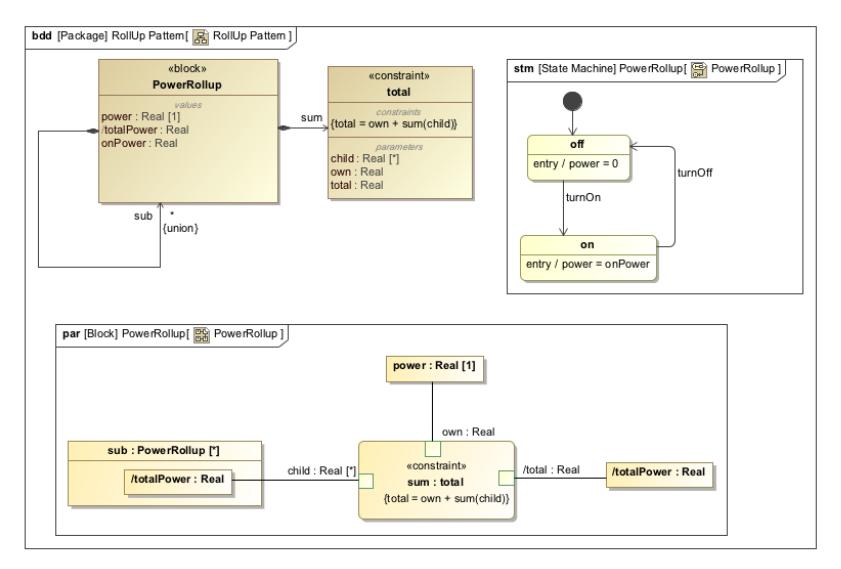
A typical way

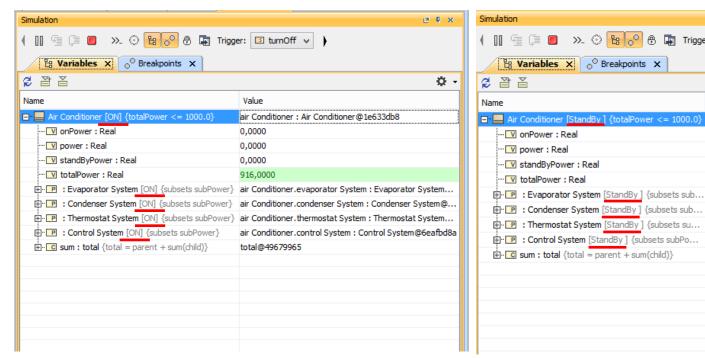

- Add property to every block in the structure
- Create Parametric diagrams for every block
- Create "sum(cost1, cost2, ...) constraint blocks
- Results
 - many hours of work
 - Polluted model
 - Hundreds of parametric diagrams
 - Need to remodel when add any new part

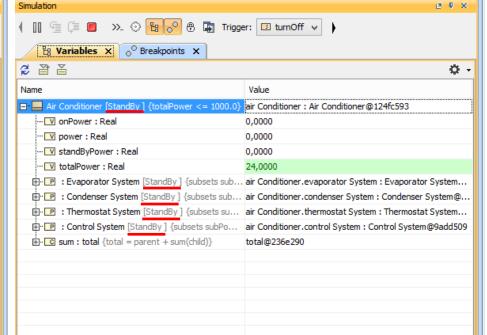

How could we improve that?

- Use inheritance
 - Define everything in some abstract "CostOwner"
 - Inherit parametrics
- Use subsets say what roles are children

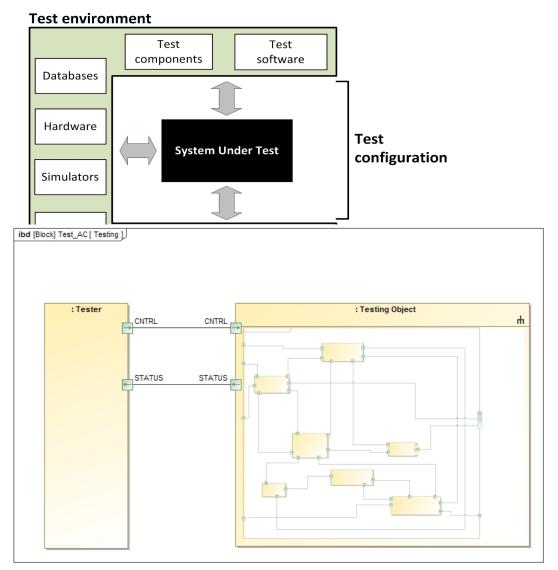

Automate the process

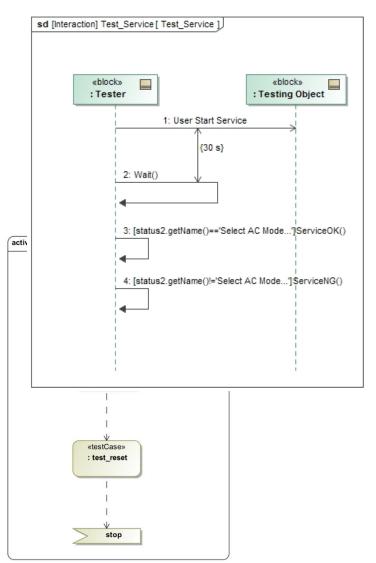

Run Analysis


Dynamic rollup



Dynamic rollup





Model based testing

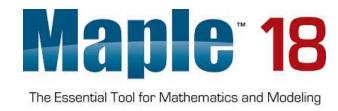
Model-based testing in SysML

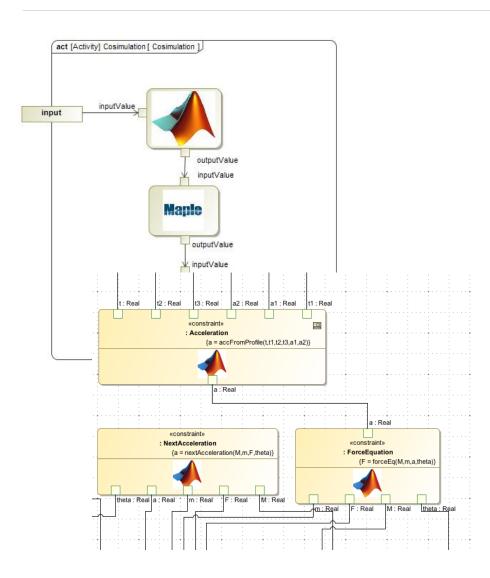
Testing report (Instance Table + Excel)

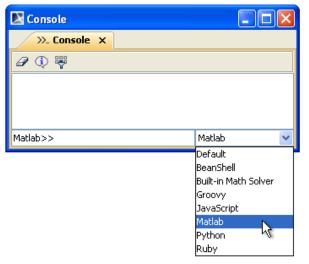
≣ (∜ Run Test									
Instance Table ×										
	+ +	🗎 🖺 🗋 Add New 🖺 Add Existing 🝵	Delete	» 🗈 Export 🛮 🕏	₩	▼ ☆ ₩		>>		
	#	Name	Testo	case1 verdict		Testcase2 verdict				
	1	□ Test at 2014.05.02 19.36	pass		pass					
	2	□ Test at 2014.05.02 19.49	pass		pass					
	3	□ Test at 2014.05.03 09.28	fail		fail					
	4	□ Test at 2014.05.03 09.33	pass	_	fail					

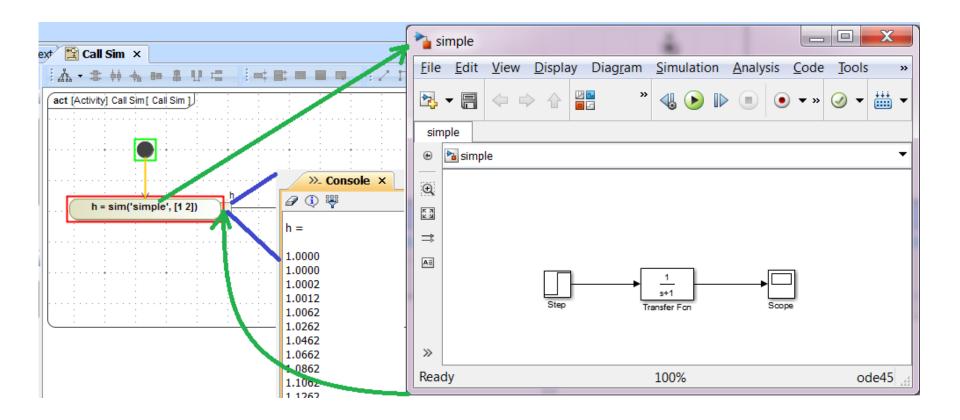
	A	В	С
1			
2	Test	testcase1 verdict	testcase2 verdict
	Test at 2014.05.02 19.49	pass	pass
3			
	Test at 2014.05.02 19.36	pass	pass
4			
	Test at 2014.05.03 09.28	fail	fail
5			
	Test at 2014.05.03 09.33	pass	fail
6			

Integration of Analytics Model


Integration of Analytics Models

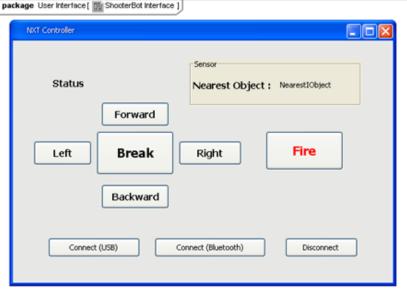


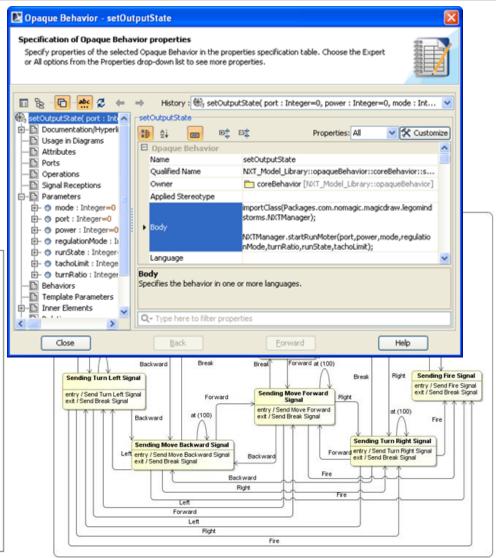

Cameo Simulation Toolkit


Math engines

- Matlab/Simulink
- Mathematica
- Maple
- Open Modelica
- Scripting
 - Javascript
 - Python
 - Groovy
 - Ruby

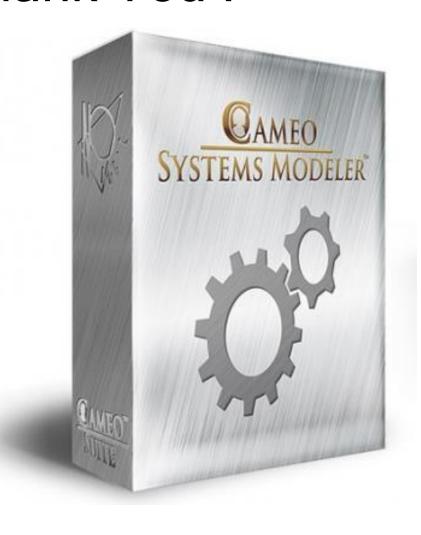
Co-simulation: Invoking Simulink Model

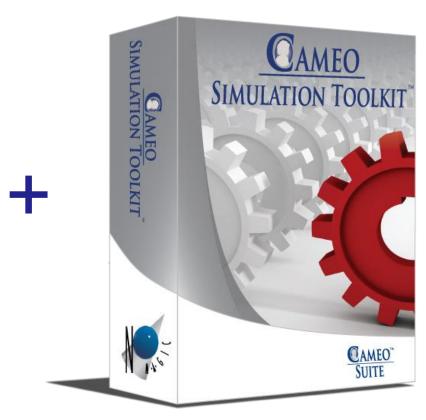




Scripting, external APIs

Summary




With simulation you can:

- Enhance user understanding by using animation and debugging
- Define your system behavior by using activity and states diagrams
- Create user interface mockup
- Do engineering analysis by using rollups, trade studies, system testing
- Integrate with other analytic tools

Thank You!

